Quasigeodesics and Gradient Curves in Alexandrov Spaces

نویسندگان

  • G. Perelman
  • A. Petrunin
چکیده

1. A comparison theorem for complete Riemannian manifolds with sectional curvatures ≥ k says that distance functions in such manifolds are more concave than in the model space Sk of constant curvature k. In other words, the restriction of any distance function distp to any geodesic γ (always parametrised by the arclength) satisfies a certain concavity condition (∗)k. For example, the condition (∗)o reads

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Quasigeodesics and Gradient Curves

This paper gathers together some applications of quasigeodesic and gradient curves. After a discussion of extremal subsets, we give a proof of the Gluing Theorem for multidimensional Alexandrov spaces, and a proof of the Radius Sphere Theorem. This paper can be considered as a continuation of [Perelman and Petrunin 1994]. It gathers together some applications of quasigeodesic and gradient curve...

متن کامل

First variation formula in Wasserstein spaces over compact Alexandrov spaces

We extend results proven by the second author ([Oh]) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spacesX with curvature bounded below: the gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W2) satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obt...

متن کامل

Gradient Flows on Wasserstein Spaces over Compact Alexandrov Spaces

We establish the existence of Euclidean tangent cones on Wasserstein spaces over compact Alexandrov spaces of curvature bounded below. By using this Riemannian structure, we formulate and construct gradient flows of functions on such spaces. If the underlying space is a Riemannian manifold of nonnegative sectional curvature, then our gradient flow of the free energy produces a solution of the l...

متن کامل

Alexandrov meets Lott–Villani–Sturm

Here I show compatibility of two definition of generalized curvature bounds — the lower bound for sectional curvature in the sense of Alexandrov and lower bound for Ricci curvature in the sense of Lott–Villani– Sturm. Introduction Let me denote by CD[m, κ] the class of metric-measure spaces which satisfy a weak curvature-dimension condition for dimension m and curvature κ (see preliminaries). B...

متن کامل

Nilpotency, Almost Nonnegative Curvature, and the Gradient Flow on Alexandrov Spaces

We show that almost nonnegatively curved m -manifolds are, up to finite cover, nilpotent spaces in the sense of homotopy theory and have C(m)-nilpotent fundamental groups. We also show that up to a finite cover almost nonnegatively curved manifolds are fiber bundles with simply connected fibers over nilmanifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003